depreciable basis - определение. Что такое depreciable basis
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое depreciable basis - определение

ELEMENT OF A BASIS FOR A FUNCTION SPACE
Basis Function; Basis functions; Blending function; Basis Functions; Fourier basis

Standard basis         
BASIS OF EUCLIDEAN SPACE CONSISTING OF ONE-HOT VECTORS
Standard bases; Standard basis vector; Kronecker basis; Standard unit vector
In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as \mathbb{R}^n or \mathbb{C}^n) is the set of vectors whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane \mathbb{R}^2 formed by the pairs of real numbers, the standard basis is formed by the vectors
Basis (universal algebra)         
STRUCTURE INSIDE OF SOME (UNIVERSAL) ALGEBRAS, WHICH ARE CALLED FREE ALGEBRAS. IT GENERATES ALL ALGEBRA ELEMENTS FROM ITS OWN ELEMENTS BY THE ALGEBRA OPERATIONS IN AN INDEPENDENT MANNER
Basis (Universal Algebra)
In universal algebra, a basis is a structure inside of some (universal) algebras, which are called free algebras. It generates all algebra elements from its own elements by the algebra operations in an independent manner.
Dual basis         
BASIS ON A DUAL VECTOR SPACE CANONICALLY ASSOCIATED TO A BASIS ON THE ORIGINAL VECTOR SPACE
Reciprocal basis
In linear algebra, given a vector space V with a basis B of vectors indexed by an index set I (the cardinality of I is the dimensionality of V), the dual set of B is a set B∗ of vectors in the dual space V∗ with the same index set I such that B and B∗ form a biorthogonal system. The dual set is always linearly independent but does not necessarily span V∗.

Википедия

Basis function

In mathematics, a basis function is an element of a particular basis for a function space. Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors.

In numerical analysis and approximation theory, basis functions are also called blending functions, because of their use in interpolation: In this application, a mixture of the basis functions provides an interpolating function (with the "blend" depending on the evaluation of the basis functions at the data points).